Submit Manuscript  

Article Details


Recent Progress in the Synthesis of Quinolines

[ Vol. 16 , Issue. 5 ]

Author(s):

Duc Dau Xuan*   Pages 671 - 708 ( 38 )

Abstract:


Background: Quinoline-containing compounds present in both natural and synthetic products are an important class of heterocyclic compounds. Many of the substituted quinolines have been used in various areas including medicine as drugs. Compounds with quinoline skeleton possess a wide range of bioactivities such as antimalarial, anti-bacterial, anthelmintic, anticonvulsant, antiviral, anti-inflammatory, and analgesic activity.

Due to such a wide range of applicability, the synthesis of quinoline derivatives has attracted a lot of attention of chemists to develop effective methods. Many known methods have been expanded and improved. Furthermore, various new methods for quinoline synthesis have been established. This review will focus on considerable studies on the synthesis of quinolines date which back to 2014.

Objective: In this review, we discussed recent achievements on the synthesis of quinoline compounds. Some classical methods have been modified and improved, while other new methods have been developed. A vast variety of catalysts were used for these transformations. In some studies, quinoline synthesis reaction mechanisms were also displayed.

Conclusion: Many methods for the synthesis of substituted quinoline rings have been developed recently. Over the past five years, the majority of those reported have been based on cycloisomerization and cyclization processes. Undoubtedly, more imaginative approaches to quinoline synthesis will appear in the literature in the near future. The application of known methods to natural product synthesis is probably the next challenge in the field.

Keywords:

Quinolines, Friedländer synthesis, bioactivity, microwave, yield, Povarov reaction, one-pot reaction.

Affiliation:

Department of Chemistry, Institute of Natural Science, Vinh University, Vinh City

Graphical Abstract:



Read Full-Text article