Submit Manuscript  

Article Details


Unexpected Reactions of Terminal Alkynes in Targeted “Click Chemistry’’ Coppercatalyzed Azide-alkyne Cycloadditions

[ Vol. 16 , Issue. 8 ]

Author(s):

Tammar H. Ali*, Thorsten Heidelberg*, Rusnah S.D. Hussen and Hairul A. Tajuddin   Pages 1143 - 1148 ( 6 )

Abstract:


Background: High efficiency in terms of reaction yield and purity has led to the extensive utilization of copper-catalyzed azide-alkyne cycloaddition (CuAAC) in various fields of chemistry. Its compatibility with low molecular weight alcohols promotes the application in surfactant synthesis to tackle the miscibility constraints of the reactants.

Objective: For the tuning of surfactant properties, double click coupling of the antipode precursors was attempted. Failure of the CuAAC to provide the targeted product in combination with unexpected reaction outputs led to an investigation of the side reaction.

Methods: The CuAAC-based coupling of sugar azide with propargyl building block in the presence of copper- (I) catalyst exclusively led to the mono-coupling product in a respectable yield of almost 80%. Besides the unexpected incomplete conversion, the loss of the remaining propargyl group, as indicated by both NMR and MS. On the other hand, application of substantial amounts of CuSO4 under reducing conditions in refluxing toluene/water furnished the alkyne dimer in a moderate yield of 43%, while no change of azide compound was noticed.

Results: The Cu(I)-catalyst applied for azide-alkyne cycloadditions enables the homo-coupling of certain terminal alkynes at a higher temperature. Moreover, aromatic propargyl ethers may be cleaved to furnish the corresponding phenol. The copper-catalyzed coupling appeared highly sensitive towards the alkyne compound. Only selected derivatives of propargyl alcohol were successfully dimerized.

Conclusions: The observed failure of the Huisgen reaction for the synthesis of sugar-based surfactants may indicate non-recognized constrains of the reaction, which could affect its wide application in bioconjugation. The temperature requirement for the alternative dimerization of terminal alkynes renders this side reaction nonrelevant for typical click couplings, while narrow substrate diversity and moderate yield limit its synthetic application.

Keywords:

Click Chemistry, Huisgen cycloaddition, alkyne dimerization, aryl-propargyl ether cleavage, Copper azide alkyne cycloaddition (CuAAC), depropargylation.

Affiliation:

Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur

Graphical Abstract:



Read Full-Text article